Valuation of Insurance Contract Liabilities
Mathieu Charest, FCIA, FSA, CFA

CIA Practice Education Course –
Finance/Investment and Individual Life and Annuities
Goals

- CALM... and what you need to know
- Assets... and the modeling thereof
- Liabilities... and the modeling thereof
- ASB NOI and Scenarios... and what has changed
- Modeling and Output ... and bringing it all together
- IFRS Phase 2 ... and what to expect in the future
Canadian Asset Liability Method (CALM)

- Prescribed method used to determine the value of insurance contract liabilities.
- Uses projections of both **assets** and **liabilities** under various scenarios (deterministic or stochastic).
- Projections go to end of **last liability** cash flow.
- Iterative process
 - Goal: determine adjusted initial assets that have zero surplus after last liability cash flow.
- Value of insurance contract liabilities = IFRS statement value of the adjusted initial assets.
How does CALM work?
How does CALM work?
How does CALM work?

Overlaying one asset over liability cash flows
How does CALM work?

Combining Asset and Liability Cash Flows
How does CALM work? (Example)

- Asset
 - Zero coupon bond with maturity in 5 years.
 - Current market value of $1,000.
 - Current statement value of $900.
- Liability
 - $1,280 guaranteed payment payable in 5 years.
 - Flat interest rates of 5% (BEY)
 - Asset in 5 years will be worth...... $1,280.
 - At t=5, can pay liability payment, without any surplus/deficit.
 - Actuarial Reserve at t = 0 is statement value of asset, therefore $900.
CALM Modeling

- Key components:
Assets

- **Cash Flows**
 - Need asset information.
 - Result from maturities, interest payments, dividends, etc.
 - May be scenario dependent (e.g., floating bonds).

- **Assumptions**
 - Asset defaults.
 - Non-fixed income assets.
 - Investment expenses.
 - Other.
Assets

- **Asset Defaults**
 - Asset can no longer make payments.
 - Vary significantly by asset class.
 - May vary by term.

- **Investment expenses**
 - Administration costs.
 - Investment management costs.
 - Other costs.
Assets

- Non-fixed Income (NFI) Assets
 - Examples: equity, real estate, some derivatives.
 - Growth rate and income rate assumptions.
 - Cannot be better than historical benchmarks.
Liabilities

- **Insurance contracts**
 - Policy obligations; for example: actuarial liabilities, amounts on deposit, provision for experience rating refunds.
 - Other balance sheet amounts; for example: dividends on deposit, portions of FTL/FTA.
 - **Does not include future new business.**

- **Liability cash flows**
 - For example: premiums, claims, benefits, expenses, taxes, policyholder dividends, experience rating refunds, reinsurance related cash flows...
 - Certain cash flows will be scenario dependent.
Liability Assumptions

Assumptions to consider

- Term of the liability;
- Policyholder reasonable expectations;
- Mortality;
- Morbidity;
- Lapse;
- Expense.
Liability Assumptions

- Term of the liability
 - Modeled term may not be contractual term.
 - Can policyholder alter the term?
 - Are there constraints on insurer’s ability to adjust term?
 - Impact of changing term
 - Increase or decrease liabilities?
 - Testing usually required.
 - Other considerations
 - Could extend term to recover acquisition costs.
Liability Assumptions

- **Policyholder Reasonable Expectations (PRE)**
 - Used as guidance for determining cash flows that are subject to insurer’s discretion.
 - For example: participating policy dividends, adjustable premiums.

- **Mortality**
 - **Insurance considerations:**
 - Age, gender, duration since policy issue, smoking habits, health, lifestyle of insured.
 - Underwriting practices, anti-selective lapse, future mortality improvements.
 - **Annuity considerations:**
 - Age, gender, health, group or individual, size of premium, benefit choice.
 - Are funds deposited within a registered vehicle?
 - Underwriting class (structured settlements, back-to-back contracts).
 - Future mortality improvements.
Liability Assumptions

- Morbidity considerations:
 - Age, gender, smoking habits, occupation, cause of disability, industry;
 - Duration since issue;
 - Definition of disability, as well as administration, claim adjudication practices;
 - Environmental factors (unemployment rates, levels and integration of government benefits), economic factors;
 - Future morbidity improvement.
Liability Assumptions

- Lapse considerations:
 - Issue age, attained age, duration, policy size, plan benefits, premium paying status, client sophistication.
 - Lapse supported vs. lapse sensitive.
 - Experience can develop quickly; use your own company experience when feasible.
 - May vary with economic scenario.
 - For example, a scenario where minimum interest rate guarantees are triggered may call for a lower lapse assumption than under higher-rate scenarios.
Liability Assumptions

- Expense considerations:
 - Include all expenses related to insurance obligations, including overhead.
 - Expenses for premium paying policies should include premium taxes and premium-based agent compensation.
 - Exercise caution in projecting unit expense improvements.
 - Include income taxes where appropriate.
 - Investment Income Taxes (“IIT”).
 - Capital taxes if incurred on assets backing liabilities.
 - Premium taxes.
 - Expense inflation should vary with the scenario.
Asset and Liability Margins

- Margins for Adverse Deviations (MfAD)
 - MfAD reflect the degree of uncertainty of the expected assumptions.
 - Larger MfAD used for assumptions that are based on less credible data.
 - Prescribed ranges in SOP for each assumption.
 - MfAD can be increased above high range point for unusually high uncertainty or if necessary to produce adequate provision for adverse deviations (PfAD).
 - Testing may be required to establish proper size and direction (margin always increases the liability value).
 - Margins appropriate for one scenario may not be appropriate for another.
ASB Notice of Intent

- The Actuarial Standards Board announced its intention to revise the economic reinvestment assumptions in late 2012.
- Exposure draft published in December 2013.
- Standards became effective in October 2014.
What Changed

- Revised calibration criteria for stochastic interest rate model to become more stringent.
- Revised deterministic scenarios to produce results comparable to those provided by stochastic methodology.
- Removal of the constraint on investment in risk-free fixed income assets after 20 years
- Establishing limits on Alternative Long Duration Assets (ALDA) usage.
1) Changes to Deterministic Risk-Free Rates

- Old standard has 10 prescribed interest rate scenarios (Base, P1 to P9) of varying forms.
- Eliminated P9 and re-designed all other scenarios.
- Canada URRs will be prescribed and reviewed every 4~5 years.
- For companies with international businesses, URRs have to be developed.
2) Changes to Credit Spread Assumptions

- Old Fixed Income (FI) reinvestment strategy assumes that the future purchase of FI will grade from the current reinvestment mix to Treasury over 20 years.
- New standards eliminate this grading to Treasury and maintain current FI reinvestment mix forever.
2) Changes to Credit Spread Assumptions

- Old Standards:
 - Grade from current spread to historical average over 5 years.
 - Years 5+ uses same historical average spread as year 5.

- New Standards:
 - Years 0 – 5:
 - Grade from current spread to historical average over 5 years.
 - 10% MfAD at year 5.

- Years 6 – 30:
 - Grade to 80 bps plus default (if lower than 5-year point).

- Years 30+:
 - Use same credit spreads as year 30.
2) Changes to Credit Spread Assumptions

- New standards added two margins on historical average credit spread:
 - 10% MfAD on credit spreads – Grading from 0% to 10% over 5 years.
 - 80 bps + padded default cap on credit spreads at year 30.

![Graph showing 20-Year Corp BBB Credit Spreads with MfADs and Cap](image)
3) Changes to ALDA Return Assumptions

- ALDA market value correction range is increased from 25% - 40% to 20% - 50%.

- Minor change to the gross up of ALDA income assumptions after market value correction.
4) Changes to ALDA Constraints

- **X/Y/Z Methodology**

Cash flows supported by ALDA t = 0

X=20%, Y= year 20, Z=75%

The following year in the projection (t = 1), the 20 year horizon resets and the 20th year cash flow is now supported by 20% ALDA. The amount of ALDA allowed in year 1 is the PV of red bars.
5) Stochastic Risk-Free Rate Scenarios

- Stochastic scenarios replace prescribed scenarios 1 to 8 only.
- Book reserve between CTE60 and CTE80 range.
More on Stochastic Risk-Free Rates

- Stochastic reserve is determined by modeling thousands of different interest rate scenarios in CALM.
 - Interest rate scenarios are generated using a calibrated scenario generator.
 - ASB does not promulgate an interest rate model to be used for stochastic risk-free modeling.
 - The requirement is to have the interest rate model generate scenarios that fully satisfy the promulgated ASB calibration criteria.
 - Generator defines how interest rates move from one period to the next based on a prescribed set of calibration criteria.
- Padded stochastic CALM reserve is set as the average of the xx% of the highest resulting liabilities (i.e., 30% for CTE70).
- The best estimate reserve is still deterministic and calculated using the prescribed base scenario.
Deterministic Scenarios

- Deterministic scenarios include
 - Risk-free yield curves
 - Deterministic scenarios to produce results comparable to those provided by stochastic methodology.
 - Curve contains at least short-term, medium-term, and long-term rates.
 - Promulgation of high, low and median ultimate reinvestment rates targeted to be consistent with promulgated stochastic calibration criteria.
 - One base scenario (CIA Base/PS 0).
 - Eight prescribed scenarios (CIA 1 to 8/PS 1 to 8).
 - All prescribed by SOP.
Deterministic Scenarios

- CIA base scenario
 - Projection year 1:
 - Yield curve as of the valuation date.
 - Projection years 2 – 20:
 - Calculate forward rates implied by valuation date curve.
 - Projection years 40:
 - Equal 30% of 20 year rates + 70% of URR Median.
 - Projection years 60+:
 - Use prescribed ultimate reinvestment rates – Median.
 - Projection years 21 – 40 and 41 – 60
 - Linear transition.
Deterministic Scenarios – CIA Base

CIA Base Scenario - Short and Long Term Risk-free Yields
(March 31, 2015)
Deterministic Scenarios

CIA P1 & P2 Scenarios - 30-Year Term Risk-free Yields
(March 31, 2015)
Deterministic Scenarios

CIA P3 & P4 Scenarios - 30-Year Term Risk-free Yields
(March 31, 2015)
Deterministic Scenarios

CIA P5 & P6 Scenarios - 30-Year Term Risk-free Yields
(March 31, 2015)
Deterministic Scenarios

CIA P7 & P8 Scenarios - 30-Year Term Risk-free Yields
(March 31, 2015)

Risk-Free Yield (in %)

Projection Year

0 10 20 30 40 50 60 70

0.00% 2.00% 4.00% 6.00% 8.00% 10.00% 12.00%
Deterministic Scenarios – Rates and Spreads

- **Interest Rates**
 - SOP prescribes how to calculate short-term and long-term rate for each scenario.
 - Interpolate for terms between short and long based on average historical curve shape.

- **Risk Premiums (Credit Spreads)**
 - CIA Base spreads grade to historical averages over 5 years.
 - CIA 1-8 must move to 90% of historical averages over 5 years, and then grade to historical cap (80 bps).
Reinvestment Strategy

- Need to follow insurer’s current investment policy.
 - Could be segment specific.
 - Could be a mix of non-fixed income and fixed income assets.

- Considerations:
 - Are changes to investment policies being considered?
 - How are cash flow shortfalls handled?
 - By selling assets? If so, what is the order?
 - By short-term borrowing?
 - Degree of asset-liability mismatch will impact earnings and reserve sensitivity.
Modeling – CALM Valuation

- Provide for economic risk through the scenario testing of cash flows.
- Project asset and liability cash flows under various economic scenarios, including the base and eight prescribed scenarios.
- Roll cash flows forward to end of projection period using economic scenario assumptions.
- Adjust starting assets so that ending surplus is zero.
- Scenario liability = Value of starting assets.
Modeling – CALM Valuation

- Liability not less than highest scenario liability under all prescribed scenarios.
 - Liability not limited to highest scenario – could be higher.

- Stochastic Modeling
 - Scope of scenarios must cover prescribed scenarios.
 - Selected scenario should have policy liabilities in the $\text{CTE}(60)$ to $\text{CTE}(80)$ range.
 - Model and parameter uncertainty would support a larger margin.
Modeling - Reinsurance Asset

- CALM calculation based on contract liability net of reinsurance cash flows.
 - Under IFRS need to report gross contract liability and a reinsurance asset instead of net contract liability that was reported under CGAAP.

- Requires use of approximation to CALM, as assets backing full gross liability usually not available.
 - Reinsurance cash flows based on same assumptions and margins as net CALM liability.
 - Use PPM interest rate vector that reproduces net liability (apply to gross and ceded cash flows).
Modeling – Currency Risk

- Applies where liabilities and supporting assets denominated in different currencies.
 - Includes situation where expenses incurred in different currency.

- Base scenario: use currency forwards (derive from interest rate differentials if necessary).

- MfAD: apply one standard deviation of changes to the exchange rate.
 - Minimum MfAD of 5% currency movement.
Modeling – Interest Rate Risk

- **Interest Rate Risk**
 - Modeled through multiple scenarios of changing interest rates.

- **C3 Margin**
 - Calculated from the scenario liability values derived from the economic scenarios.
 - **Equals:**
 - Most adverse scenario liability minus base scenario liability.
 - If use stochastic CALM, then base ≠ CTE(0).
 - Must be at least as great as that resulting from the most adverse of the eight prescribed scenarios.
Choose worst scenario for each block?
- Only one future scenario applied
 - Unless foreign block, in which case a different scenario can be selected.
- Reserves should be “sufficient without being excessive”.

Participating should not generally mingle non-participating.
- Due to restrictions on flows between par and non-par.

Are “synergies” permanent?
IFRS Phase 2

- Why are the accounting standards being updated?
 - Global standard for insurance contract liabilities.
 - Improve transparency of financial statements for users.
 - Improve comparability between insurers and other fields.
 - Intents of the changes are not to increase/decrease reserves.

- Actuaries are mainly preparers, not users.

- Known impacts
 - New modeling methodologies.
 - Significant presentation changes.
 - Considerable effort at transition.

- Potential effective date of January 1, 2019... or later.
IFRS Phase 2

- Main changes relate to discounting of liabilities.
 - Other impacts are collateral impacts from the discount rate.
- Discount rate curve (biggest change from CALM).
 - Reflects characteristics of the liability (not the assets).
 - At inception, set
 \[PV \text{ of future inflows} = PV \text{ of future outflows} + \text{risk adjustment} + \text{contractual service margin (CSM)} \]
 - Risk adjustment reflects the compensation an insurer requires for bearing the uncertainty in the cash flows.
 - CSM eliminates any accounting gains at inception of the contracts.